## Quiz 1 in ch1 and 2.1

```
Question 1
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

Using three digits rounding, the value of $\ln 3+\frac{1}{6} \sin (\ln 3)=$
a. 0.842
b. 1.20
c. 0.840
d. 1.24
(e. 1.25

The correct answer is: 1.25

Question 2
Correct
Mark 1.00 out of 1.00
P Flag
question

The four digits representation of $p=\frac{3}{7}$ in chopping is
a. 0.428
b. 0.4285
c. 0.4280
d. 0.429
e. 0.4286

The correct answer is: 0.4285

Question 3
Correct
Mark 1.00 out
of 1.00
P Flag
question

If a diameter of square is measured as $\tilde{d}=2.06 \mathrm{~cm}$ but the actual diameter is $\mathbf{d}=\mathbf{2}$, then $\tilde{d}$ should approximate $\mathbf{d}$ up to
a. 4 significant digits
b. 2 significant digits
c. 5 significant digits
d. 1 significant digits
e. 3 significant digits

The correct answer is: 2 significant digits

Question 4
Correct
Mark 1.00 out of 1.00

P Flag
question

Question 5
Correct
Mark 1.00 out
of 1.00
P Flag question

The function $g(x)=1+\frac{6}{x}$ on $[1,4]$
a. has repulsive fixed point
b. has no fixed points
© c. has a unique fixed point
d. has divergent fixed point iteration
e. has two fixed points

The correct answer is:
has a unique fixed point

If the length of a tower is measured as $\tilde{d}=120.06$ meter with relative error $\mathbf{0 . 0 0 0 5}$, then the actual length of the tower $\mathbf{d}=$
a. 122 meter
b. 125 meterc. 120 meterd. 118 meter
e. 115 meter

The correct answer is: 120 meter

## Quiz 2 from Pages 25 to 40.1

```
Question 1
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

Using Secant Method with $P_{0}=1$ and $P_{1}=1.2$, the iteration $P_{2}$ that approximates the solution of $\cos x=\frac{x}{4}$ using 5 rounding digits is
a. none
b. 1.2546
c. 1.2547
d. 1.2544
e. 1.2548
f. 1.2545

The correct answer is:
1.2547

If the Bisection method is used to estimate the root of $\sin x-x^{2}+1=0$ on the interval [1, 2], then the third iteration is
a. 1.4375
b. 1.25
c. 1.75
d. 1.125
e. 1.375
f. none

The correct answer is:
1.375

```
Question 3
Incorrect
Mark 0.00 out
of 1.00
P Flag
question
```

Assume 1-b is the first iteration used by False Position Method to estimate the root of $f(x)=x^{4}-x^{3}-2 x+b$ on $[0,1]$. Then the value of $b$ is
a. $\frac{2}{3}$
b. 1
c. $\frac{3}{2}$
d. 3
e. none
f. 2

The correct answer is:
$\frac{2}{3}$

Using Newton's Method with $P_{0}=1$, the approximated root of $\cos x=\frac{x}{4}$ using 3 chopping digits with error less than 0.03 is
a. none
b. 1.27
c. 1.26
(c) d. 1.25
e. 1.24
f. 1.22

The correct answer is:
1.25

Let $g(x)=\sin (x+1)$. Assume the FPI is used with $P_{0}=0.5$ to estimate the fixed point on $[0.2,1.5]$ using three digits rounding. Then the number of iterations needed to get accuracy $10^{-2}$ is at least
(- a. 388
b. 387
c. 390
d. none
e. 391
f. 389

The correct answer is:
none

## Quiz 3 from Pages 41-58

```
Question 1
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

Question 2
Correct
Mark 1.00 out of 1.00
P Flag
question

The correct answer is:
1.618

If we use the secant method to estimate the root of $f(x)=(x-2) e^{x}$, then the order of convergence is
a. 0.618
b. 2
c. 1.618
d. none
e. 1

If we use Newton iteration to estimate the root of $f(x)=(x-2) \ln (x-1)$, then the asymptotic error constant is
a. $\frac{2}{3}$
b. $\frac{1}{2}$
c. 2
d. $\frac{1}{3}$
e. 1
f. none

The correct answer is:
$\frac{1}{2}$

## Correct

Mark 1.00 out of 1.00

P Flag
question

| Question 5 |
| :--- |
| Incorrect |
| Mark 0.00 out |
| of 1.00 |
| P Flag |
| question |

If A is $5 \times 5$ matrix, then the cost for calculating $|A| A^{2}$ is
a. 225
b. 324
C. 255
d. none
e. 549
f. 574
g. 604

The correct answer is:
574

If Accelerated Newton method is used to approximate the root $x=0$ of $f(x)=x^{3}-x^{2}$ with $P_{0}=0.5$, then
a. $\quad P_{1}=1.5$
b. none
c. $P_{1}=-1.5$
d. $P_{1}=-0.5$
e. $P_{1}=-1$
f. $\quad P_{1}=1$

The correct answer is:
$P_{1}=-0.5$

If we use Newton iteration to estimate the root of $f(x)=(x-3) \ln (x-1)$, then the iteration converges
a. none
b. cubically
c. quadratically
d. linearly $\mathbf{x}$

The correct answer is:
quadratically

## Quiz 4 in Ch4 and Ch5

```
Question 1
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

Given $\boldsymbol{f}(\boldsymbol{x})=\cos \boldsymbol{x}$ on $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$. If uniform partition is used for interpolation then an upper bound for the Error Term $\boldsymbol{E}_{2}$ is

Select one:
a. $\frac{\pi^{3}}{167454 \sqrt{3}}$
b. $\frac{\pi^{4}}{157464}$
C. $\frac{\pi^{3}}{177454 \sqrt{3}}$
d. $\frac{\pi^{4}}{176454}$
e. $\frac{\pi^{3}}{6561 \sqrt{3}}$
f. $\frac{\pi^{3}}{1944 \sqrt{3}}$
g. none

The correct answer is: $\frac{\pi^{3}}{1944 \sqrt{3}}$

Question 2
Correct
Mark 1.00 out
of 1.00
P Flag
question

Given the following cubic spline

$$
\begin{aligned}
& s(x)= \begin{cases}s_{0}(x)=a x^{3}+b, & 0 \leqslant x \leqslant 1 \\
s_{1}(x)=6(x-1)^{2}+c(x-1)+5, & 1 \leqslant x \leqslant 2\end{cases} \\
& \text { Then one of the following statements is True }
\end{aligned}
$$

Select one:
a. $s(x)$ is not natural and $a=3, b=2, c=6$
b. $s(x)$ is natural and $a=2, b=3, c=6$
c. $s(x)$ is natural and $a=3, b=2, c=6$
d. $s(x)$ is natural and $a=3, b=6, c=2$
e. $\mathbf{s}(\mathbf{x})$ is not natural and $\mathbf{a}=2, b=3, \mathbf{c}=6$
f. $s(x)$ is not natural and $a=3, b=6, c=2$

The correct answer is: $s(x)$ is not natural and $a=2, b=3, c=6$

Given the points $(\mathbf{0}, \mathbf{1}),(-\mathbf{1}, \mathbf{0}),(\mathbf{3}, \mathbf{1 6})$. The Second Divided Differences $f[0,-1,3]$ is

Select one:
a. O
b. $\frac{1}{3}$
c. -3
(o d. 1
e. 3
f. $-\frac{1}{3}$
g. -1
h. none

The correct answer is: 1

```
Question 4
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

```
Question 5
Correct
Mark 1.00 out
of 1.00
P Flag
question
```

The Root-Mean-Square Error for the linear approximation of $f(x)=1+3 x$
to the data $(0,0.8),(1,-1.8),(-1,3)$ is

Select one:a. 0.36
b. 0.6
c. 0.67
d. none
e. 0.08
f. 0.06
(. g. 4.42
h. 3.04

The correct answer is:
4.42

```
Given the points (1, 1.10), (2, 1.37), (3, 1.61). The
Lagrange coefficient }\mp@subsup{L}{2,2}{(2.5) is
Select one:
    a. O
    b. 0.357
    c. none
    d. 0.573
    e. 0.735
    f. 0.537
    g. 0.375
    h. 0.753
```

The correct answer is:
0.375

## Quiz 5 in Ch6

Question 1<br>Correct<br>Mark 1.50 out<br>of 1.50<br>P Flag<br>question

Let $f(x)=e^{x} \cos x$. The estimated value of $f^{\prime}(2)$ using the backward difference formula of order [ $\left.0\left(h^{\wedge} 2\right) \backslash\right]$ and step size $h=1$ is
a. -5.25
b. 2.35
c. -7.05
d. 4.65
e. 8.29
f. 3.79
g. -6.83
h. none

The correct answer is:
-7.05

```
Question 2
Correct
Mark 1.50 out
of 1.50
P Flag
P Flag
Question 2
Correct
Mark 1.50 out
of 1.50
PFlag
question
```

- 

Question 3
Incorrect
Mark 0.00 out
of 2.00
P Flag
question

Consider the following points: $(-2,-3),(-1,0),(0,2)$. The estimated value of $f^{\prime}(-1)$ using the central difference formula of order $o\left(h^{2}\right)$ is
a. -2.5
b. -1.5
C. 1.5
d. none
e. 1
f. 0
(9. 2.5
h. -1

The correct answer is:
2.5

Let $f(x)=\sin x$. If we estimate $f^{\prime}\left(x_{0}\right)$ by the difference formula $f^{\prime}\left(x_{0}\right)=\frac{f_{0}-3 f_{-1}+3 f_{-2}-f_{-3}}{h^{3}}+\frac{3 h f^{(4)}(c)}{2}$, then the optimal step size $h$ will be
a. none
b. 0.095
c. $\mathbf{0 . 0 0 9 5}$
d. 0.01
(o. 0.001
f. 1
g. 0.1
h. 0.95

The correct answer is:
0.0095

(1) Using the bisection method with $a_{0}=4, b_{0}=5$ to estimate the solution of the equation $x^{3}-7 x^{2}+15 x=19$, if $c_{0}=4.5$ Find the next 2 iterations $c_{1}, c_{2}$.

$$
\begin{align*}
& f(x)=x^{3}-7 x^{2}+15 x-19 \\
& f(4)=-7, f(5)=6 \\
& f(4.5)=-2.20 \\
& {\left[a_{1}, b_{1}\right)=[4.5,5] \Rightarrow c_{1}=4.75}  \tag{2}\\
& f\left(c_{1}\right)=1.48 \\
& {\left[s_{2}, b_{2}\right]=[4.5,4.75] \Rightarrow c_{2}=4.625} \tag{2}
\end{align*}
$$

(2) Using the False position method with $a_{0}=4, b_{0}=5$ to estimate the solution of the equation $x^{3}-7 x^{2}+15 x=19$, If $c_{0}=4.6154$, Find the next iteration

$$
\begin{align*}
& f(x)=x^{3}-7 x^{2}+15 x-19 \\
& f(4.6154)=-0.5656 \\
& {\left[a_{1}, b_{1}\right] }=[4.6154,5]  \tag{2}\\
& c_{1}=b_{1}-\frac{f(b,)\left(b_{1}-a_{1}\right)}{f\left(b_{1}\right)-f\left(a_{1}\right)} \\
&=5-\frac{6(0.3846)}{6+0.5656} \\
&=4.64853
\end{align*}
$$


3) Using Fixed point theorem, show why the function $g(x)=\sqrt[3]{2 x+5}$ has a fixed point in the interval $[2,3]$
$g(x)$ in creasing
$2\left\{\begin{array}{l}g(y)=\sqrt[3]{9}=2.08 \in[2,3] \\ 9(3)=\sqrt[3]{11}=2.22 \in[2,3]\end{array}\right.$

$\Rightarrow g(x \mid \in[1,3) \Rightarrow$ there exists atiad pout $i=[z, 3]$
$n(x)=\sqrt[3]{2 x+5}$ 4) Show why the fixed-point iteration generated by the function $g(x)=\sqrt[1]{2 x+5}$ converges in the interval $[2,3]$

$$
g(x)=(2 x+5)^{1 / 3}
$$

(1) $\quad\left|g^{\prime}(x)\right|=\frac{1}{3}(2 x+5)^{-1 / 3} \cdot 2$
(3)
right $k$
by th, the iteration converges $\forall P_{0} \in[2,3]$
(5) The point $p=2$ is a fixed point of the function $g(x)=\frac{2}{x}+1$. Show if it is attractive or repulsive and why.
$2\left\{\begin{array}{l}g^{\prime}(x)=\frac{-2}{x^{2}} \\ \left|g^{\prime}(2)\right|=\left|-\frac{1}{2}\right|=\frac{1}{2}<1\end{array}\right.$
$2[P=2$ is attraction FP.
6) The point $p=3$ is a zero of the function $f(x)=x^{3}-7 x^{2}+15 x-9$, Use Newton iteration to estimate the zero $p=3$, starting with $p_{0}=3.2$ Find $p_{1}, p_{2}$
$2 \quad P_{1}=3.10434 \mathrm{~F}$
$2 P_{2}=3.0534 \ldots$
7) The point $p=3$ is a zero of the function $f(x)=x^{3}-7 x^{2}+15 x-9$. using Newton iteration to estimate the zero $p=3$, Find the order of convergence $R$ and the asymptotic error constant $A$.
$f(3)=27-63+45-9=0$
$f^{\prime}(x)=3 x^{2}-14 x+15$
$f^{\prime}(x)=27-42+15=0$
$f^{\prime \prime}(x)=6 x-14$
(2) $\begin{aligned} & f^{\prime \prime}(3)=4 \neq 0 \\ & M=2 \quad R=\end{aligned}$
8) The point $p=2$ is a fixed point of the function $g(x)=\frac{x}{2}+\frac{2}{x}$
find the order of convergence of the fixed-point iteration generated by $g(x)$
$g(2)=2$
$g^{\prime}(x)=\frac{1}{2}-\frac{2}{x^{2}}$
(2) $9^{\prime}(2)=0$
$9^{\prime \prime}(x)=\frac{4}{x^{3}}$
(1-3) $9^{\prime \prime}(2)=\frac{1}{2} \neq 0$
$\Rightarrow R=2$
9) If $A$ is $n \times n$ matrix, what is the cost of calculating $3 A^{3}-2 A$

$$
\begin{aligned}
& A^{2} \rightarrow n^{2}(2 n-1)=2 n^{3}-n^{2} \\
& A^{3} \rightarrow 2\left(2 n^{3}-n^{2}\right)=4 n^{3}-2 n^{2} \\
& 3 A^{3} \rightarrow 4 n^{3}-2 n^{2}+n^{2} \\
& 2 A \rightarrow n^{2} \\
& (1)+(2) \rightarrow n^{2}
\end{aligned}
$$

$$
\text { Total: } 4 n^{3}-2 n^{2}+n^{2}+n^{2}+n^{2}=4 n^{3}+n^{2}
$$

10) Consider the following system of equations

$$
\begin{aligned}
& x=g_{1}(x, y, z)=3 x^{2}-2 y^{3}+2 z, \\
& y=g_{2}(x, y, z)=10-2 x y-z^{2} \\
& z=g_{3}(x, y, z)=10 z-2 x y
\end{aligned}
$$

Use Gauss-Sidel iteration to find the $1^{\prime \prime}$ iteration given that the initial point is $(3,2,4)$

$$
\begin{aligned}
& p_{1}=g_{1}(3,2,4)=19 \\
& g_{1}=g_{2}(19,2,4)=-82 \\
& r_{1}=g_{2}(19,-82,4)=3156
\end{aligned}
$$

This page each problem worth 5 points
II) Use newton method to find the I' iteration of the following system

$$
\begin{array}{ll}
x=3 x^{2}-y^{3} & f(x, y)=3 x^{2}-y^{3}-x \\
y=2 y^{2}-2 x & f(1.3,2.4)=-3 C .1
\end{array}
$$

given that the initial estimation is $(1.2,3.4)$

$$
\begin{aligned}
& f_{2}(x, y)=2 y^{2}-2 x-y \\
& t_{6}(1,43.4)=17.32
\end{aligned}
$$

$$
\begin{aligned}
& J=\left(\begin{array}{cc}
6 x-1 & -3 y^{2} \\
-2 & 4 y-1
\end{array}\right) \\
&=\left(\begin{array}{cc}
6.2 & -34.68 \\
-2 & 12.6
\end{array}\right), J^{-1}=\frac{1}{8.76}\left(\begin{array}{cc}
12.6 & 34.68 \\
2 & 2.2
\end{array}\right) \\
&=\left(\begin{array}{cc}
1.44 & 3.46 \\
0.228 & 0.708
\end{array}\right) \\
&\binom{P_{1}}{g_{1}}=\binom{1.2}{3.4}-\left(\begin{array}{cc}
1.44 & 3.96 \\
0.228 & 0.708
\end{array}\right)\binom{-36.184}{17.32}=\binom{-15.28}{-0.6126}
\end{aligned}
$$

12) Solve the following system of equations using Gaussian elimination with partial pivoting and three digits rounding

$$
\begin{aligned}
& 6.33 x-0.113 y=6.10 \\
& 10.2 x+0.182 y=10.6
\end{aligned}
$$

$$
\begin{align*}
& {\left[\begin{array}{ll|l}
10.2 & 0.182 & 10.6 \\
6.33 & -0.113 & 6.10
\end{array}\right] \mathrm{m}_{21}=\frac{6.33}{10.2}=0.621} \\
& R_{2}-6.621 R_{1}\left[\begin{array}{ll|l}
10.2 & 0.182 & 10.6 \\
0 & -0.226 & -0.48
\end{array}\right] \tag{3}
\end{align*}
$$

$$
\begin{aligned}
& x_{2}=2.12 \\
& x_{1}=1.00
\end{aligned}
$$

5

2 ${ }^{\text {nd }}$ Exam


Each problem worth 5 points
Qe1) Consider the function $f(x)=\frac{1}{x}$ and the data points
$(0.1,10),(0.2,5),(0.3,3.33)$
Find nemeses interpolating polynomial $P_{2}(x)$.
$2 P_{1}(k)$
$\left.=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{1}\right)\left(x_{0}-x_{2}\right)}\right\rangle_{1}+\frac{\left(x-x_{2}-1\left(x-x_{2}\right)\right.}{\left(x-x_{1}, x_{1}-x_{1}\right)} y_{1}-\frac{\left(x-x_{1}(x-x)\right.}{x_{2}-x_{1} u_{2}-x_{1} y_{2}}$

$$
=\frac{(x-0.2)(x-0.2-3)}{(-0.1)(-0.2)}(i d)+\frac{(x-0.1)(x-3)}{(0.1)(-0.3)}(5)
$$

$$
+\frac{(x-a-1)(x-4-2)}{(a-2)(-1)}(x)
$$

$$
\left.=50_{6}(x-2.2)(x-0.3)-500(x-2.1)(x-0.3)+166.5(x-2.1) k+1\right)
$$

Q\#2) Find an upper bound for the error in the above estimation (in problem 1).


Quay) Derive the normal equations for the best fit of the form $f(x)=A x^{3}+B x$
$\left.E(A, B)=\sum_{x=1}^{2}(A(x)-y)=\sum_{i=1}^{n}\left(A x^{3}+B x-\right)^{2}\right)^{2}$
$q \frac{\partial E}{\partial \hat{A}}-6=\sum_{k=1}^{\sum} 2\left(A-x_{k}^{3}+8 x-y\right) \cdot x_{k}^{3}$
$A_{i=1}^{n} x_{i}^{2}+B \sum_{i=1}^{2} x^{4}-\sum_{n=1}^{n} y_{k} y_{n}^{3}$
$2 \frac{D E}{\Delta B}=0-\sum_{k=1}^{2} 2\left(A-x_{k}^{2}+B x-y_{k}\right)+x_{k}$

$$
A \sum_{n=1}^{n} x_{n}^{y}+B \sum_{n=1}^{2} x_{k}^{2}=\sum_{n=1}^{n} y_{k} x_{k}-(-2)
$$

Q46) Find $A, B$ using the normal equations derived above ( in Qu5) and the following data

| $(1,-2),(2,2),(3,18)$ |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $x_{n}$ | $y_{n}$ | $x_{n}^{2}$ | $x_{k}^{3}$ | $x_{k}^{4}$ | $x_{k}^{6}$ | $y_{k} x_{k}$ | $y_{k} x_{n}^{3}$ |
| 1 | -2 | 1 | 1 | 1 | 1 | -2 | -2 |
| 2 | 2 | 4 | 8 | 16 | 64 | 4 | 16 |
| 3 | 18 | 9 | 27 | 64 | 729 | 54 | 486 |

$794 A+988=500$
98 if $+1+B=5 C$

$$
\begin{aligned}
& 98++14 B=56 \\
& A=\left|\begin{array}{ll}
500 & 794 \\
56 & 14
\end{array}\right| \\
&\left|\begin{array}{ll}
744 & 98 \\
98 & 14
\end{array}\right|=\frac{1512}{1512}=1, B=\frac{\left|\begin{array}{cc}
794 & 500 \\
498 & 56
\end{array}\right|}{1512}
\end{aligned}
$$

Q\#7) compare the maximum error, average error, and RMS error for the approximation $f(x)=x^{3}-3 x$ to the data points $(0,1),(1,-3),(2,5),(3,15)$

| $x_{x}$ | $y_{x}$ | $f\left(x_{n}\right)$ | $\left\|e_{x}\right\|$ | $\left\|e_{x}\right\|^{2}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 0 | 1 | 1 |
| 1 | -3 | -2 | 1 | 1 |
| 2 | 5 | 2 | 3 | 9 |
| T. tad |  |  |  |  |
|  | 15 | 18 | 3 | 9 |

2 Max em $^{2}=E_{\infty}(t)=3$

$$
\begin{aligned}
& 2 \text { A werare err } E_{1}(t)=\frac{8}{4}=2 \\
& 2 \text { RM error }=E_{2}(f)=\left(\frac{2 u}{4}\right)^{1 / 2}=\sqrt{5}
\end{aligned}
$$

Q48) Find a suitable Lincarization for $f(x)=C x+D x^{3}$ (Don't find $C, D$ )

$$
\left.\begin{array}{l}
y=C x+D x^{3} \\
\frac{y}{x}=D x^{2}+c \\
y=A x+B \\
y=\frac{y}{x} \\
x=x^{2}
\end{array}\right\} \Rightarrow A, B
$$

Qa99) find the clamped cubic spline that interpolates the data $(1,-1)$, $(3,22)$.

$$
f^{\prime}(4)=0 . f^{\prime}(3)=24
$$

$5(x)=a_{0}(x-1)^{3}+b_{0}(x-1)^{2}+c_{6}(x-1)+0_{0}$
(1)
$a(1)=-1 \Rightarrow a=-1$
$g(3)=22 \Rightarrow 8 a_{0}+4 b_{0}+2 c_{0}-1=22$
$g^{\prime}(x)=3 a_{0}(x-1)^{2}+2 h_{0}(x-1)+c_{0}$
(1) $a^{\prime}(1)=6=C_{a}$
$g^{\prime}(3)=24=129_{0}+46_{0}$
$(2) \begin{aligned} & 8 a_{0}+4 b_{0}=23 \\ & 12 a_{0}+4 b_{0}=24\end{aligned}$
$g(x)=\frac{1}{4}(x-1)^{3}+\frac{2}{4}(x-1)^{2}-1$
(2) $8\left(\frac{1}{4}\right)+4 b_{0}=23 \Rightarrow b_{0}=\frac{31}{4}$
$4 b_{0}=21$
Qa10) For the the data $(1,2),(3,4),(5,2)$
If $L_{21}(x)=\frac{3}{4}$ find $x$ ? $X_{6}$ 首 $\quad x_{2}$
(1) $\left.L_{2,1}, x\right)=\frac{\left(x-x_{0}\right)\left(x-x_{2}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right)}$
(2) $\frac{(x-1)(x-5)}{(3-1)(3-5)}=\frac{3}{4}$
$\frac{(x-1)(x-5)}{(2)(-2)}-\frac{3}{4}$

$$
\begin{align*}
& x^{2}-6 x+5=-3 \\
& x^{2}-6 x+8=0 \\
& (x-2)(x-4)=6  \tag{2}\\
& x=2,4
\end{align*}
$$

## Final Exam


(4) Find the repulsive fixed point of $g(x)=\frac{10}{x}+3$

## Answer=

5) Find the order of convergence of the following sequence of numbers that converges to $\mathrm{p}=1$, Prove your answer numerically

$$
\begin{aligned}
p_{0} & =1.2000000000 \\
p_{1} & =1.006060606 \\
p_{2} & =1.000006087 \\
p_{3} & =1.000000000
\end{aligned}
$$

## Answer=

6) When estimating the roots of the function $f(x)=(x+3)^{3}(x-1)$ using Newton Method, find the asymptotic error constant $A$ for $p=1$

## Answer=

2
7) Find the point on the parabola $y=x^{3}$ that is closest to the point $(1,2)$ with two digits accuracy of the $x$ coordinate.

## Answer=

8) Using a table, Find $f[1.3,2.4,3.6]$ where $f(x)=x^{2}$

## Answer=

9) Find $L_{3,2}(5)$ using the nodes

$$
x_{0}=3, x_{1}=4, x_{2}=6, x_{3}=8
$$

## Answer=

3
10) Find the cost of evaluating $p_{2}(x)$, for a specific $x$, where $p_{2}(x)$ is the Lagrange interpolating polynomial

## Answer=

11) Find the best upper bound for the error when using Newton polynomial $p_{3}(x)$ to estimate $f(x)=\ln (x+1)$ in the interval $[0.1,0.4]$ and using uniform partition.

## Answer=

12) If the following is a cubic spline over [ 0,2 ]

$$
S(x)=\left\{\begin{array}{c}
-2 x^{3}+2 x^{2}+a x+1, \quad 0 \leq x \leq 1 \\
7(x-1)^{3}-4(x-1)^{2}+b(x-1)+1, \quad 1<x \leq 2
\end{array}\right\}
$$

Find $a$ and $b$

## Answer=

4
13)- Consider the following formula

$$
f^{\prime \prime}\left(x_{0}\right)=\frac{f_{3}-4 f_{0}+3 f_{-1}}{6 h^{2}}-\frac{2 h f^{\prime \prime \prime}(c)}{3}
$$

Find the optimal $h$

## Answer=

(14) Approximate $\int_{-1}^{1} x^{2} e^{x^{2}} d x$

Using Simpson's rule

## Answer=

15)- Estimate $f^{\prime}(4)$, and $f^{\prime \prime}(4)$ using central difference formulas of order $o\left(h^{2}\right)$ for the data $(0,1),(2,4),(4,6),(6,9)$

## Answer=

16)- Consider the quadrature formula

$$
\int_{-6}^{6} f(x) d x \cong A f(-6)+B f(6)
$$

If the degree of precession is 1 , Find $A, B$

## Answer= <br> 17) - Consider the quadrature formula <br> $$
\int_{-1}^{1} f(x) d x \cong \frac{4}{5} f\left(-\frac{1}{2}\right)+\frac{6}{5} f\left(\frac{1}{3}\right)
$$

If the degree of precession is 1 , Find the truncation error.

Answer=

Good Luck

